Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 4(1): 100688, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38218189

RESUMO

Single-molecule enzyme activity-based enzyme profiling (SEAP) is a methodology to globally analyze protein functions in living samples at the single-molecule level. It has been previously applied to detect functional alterations in phosphatases and glycosidases. Here, we expand the potential for activity-based biomarker discovery by developing a semi-automated synthesis platform for fluorogenic probes that can detect various peptidases and protease activities at the single-molecule level. The peptidase/protease probes were prepared on the basis of a 7-amino-4-methylcoumarin fluorophore. The introduction of a phosphonic acid to the core scaffold made the probe suitable for use in a microdevice-based assay, while phosphonic acid served as the handle for the affinity separation of the probe using Phos-tag. Using this semi-automated scheme, 48 fluorogenic probes for the single-molecule peptidase/protease activity analysis were prepared. Activity-based screening using blood samples revealed altered single-molecule activity profiles of CD13 and DPP4 in blood samples of patients with early-stage pancreatic tumors. The study shows the power of single-molecule enzyme activity screening to discover biomarkers on the basis of the functional alterations of proteins.


Assuntos
Neoplasias Pancreáticas , Peptídeo Hidrolases , Ácidos Fosforosos , Humanos , Peptídeo Hidrolases/metabolismo , Proteínas , Biomarcadores , Hormônios Pancreáticos
2.
Lab Chip ; 23(4): 684-691, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36255223

RESUMO

The femtoliter-chamber array is a bioanalytical platform that enables highly sensitive and quantitative analysis of biological reactions at the single-molecule level. This feature has been considered a key technology for "digital bioanalysis" in the biomedical field; however, its versatility is limited by the need for a large and expensive setup such as a fluorescence microscope, which requires a long time to acquire the entire image of a femtoliter-chamber array. To address these issues, we developed a compact and inexpensive wide-field imaging system (COWFISH) that can acquire fluorescence images with a large field of view (11.8 mm × 7.9 mm) and a high spatial resolution of ∼ 3 µm, enabling high-speed analysis of sub-million femtoliter chambers in 20 s. Using COWFISH, we demonstrated a CRISPR-Cas13a-based digital detection of viral RNA of SARS-CoV-2 with an equivalent detection sensitivity (limit of detection: 480 aM) and a 10-fold reduction in total imaging time, as compared to confocal fluorescence microscopy. In addition, we demonstrated the feasibility of COWFISH to discriminate between SARS-CoV-2-positive and -negative clinical specimens with 95% accuracy, showing its application in COVID-19 diagnosis. Therefore, COWFISH can serve as a compact and inexpensive imaging system for high-speed and accurate digital bioanalysis, paving a way for various biomedical applications, such as diagnosis of viral infections.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Microscopia de Fluorescência , Microscopia Confocal
3.
Commun Biol ; 5(1): 473, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35614128

RESUMO

In the ongoing COVID-19 pandemic, rapid and sensitive diagnosis of viral infection is a critical deterrent to the spread of SARS-CoV-2. To this end, we developed an automated amplification-free digital RNA detection platform using CRISPR-Cas13a and microchamber device (opn-SATORI), which automatically completes a detection process from sample mixing to RNA quantification in clinical specimens within ~9 min. Using the optimal Cas13a enzyme and magnetic beads technology, opn-SATORI detected SARS-CoV-2 genomic RNA with a LoD of < 6.5 aM (3.9 copies µL-1), comparable to RT-qPCR. Additionally, opn-SATORI discriminated between SARS-CoV-2 variants of concern, including alpha, delta, and omicron, with 98% accuracy. Thus, opn-SATORI can serve as a rapid and convenient diagnostic platform for identifying several types of viral infections.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...